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ABSTRACT

MDCT based perceptual audio coders shape the quantization noise according to simple psychoacoustic rules and
general behavioral aspects of the audio signal such as stationarity and tonality. As a consequence, the resulting
compressed audio representation has little semantic value making difficult MPEG-7 oriented operations such as
feature extraction and audio modification directly in the compressed domain. First results in this perspective are
reported using an enhanced version of an MDCT based perceptual coder that implements sinusoidal modeling and
subtraction directly in the MDCT frequency domain, as well as spectral envelope modeling and normalization. The
implications on the coding efficiency are also addressed.

INTRODUCTION ing to perceptual rules, so as to render the noise inaudible in
the presence of the audio signal.

High-quality audio coders are in general frequency do-
main coding schemes based on the perceptual audio coding
paradigm [1]. As illustrated in Fig. 1, this paradigm seeks
the maximization of the coding gain by shaping the maximum
amount of coding noise into an arbitrary audio signal accord-

In general, no specific parametric analysis of the audio sig-
nal is implemented to drive the coding decision; rather its
time/frequency energy distribution is in general carefully eval-
uated in order to take advantage of the most obvious proper-
ties and tolerences of the human auditory system (HAS) such

*This work has been supported by the portuguese Foundation as loudness sensitivity, frequency selectivity, frequency and
for Science and Technology (FCT) under project FCT34018/99. temporal masking effects, and stereo unmasking [2].
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Fig. 1: Block diagram of a perceptual audio coder.

In a typical audio coder, these perceptual rules are modeled in
a simplified way by a psychoacoustic model. The perceptual
properties and tolerences of the HAS are generally regarded
to as opportunities to remove the irrelevant part of an ar-
bitrary audio signal, by means of an appropriate shaping of
the quantization noise in a suitable time-frequency decompo-
sition of the audio signal. Irrelevancy reduction is typically
responsible for the most significant part of the coding gain.

The remaining fraction of the coding gain is regarded as re-
dundancy readuction and is due to the objective coding gain
over PCM provided by the analysis/synthesis filter bank [3],
to the use of noiseless coding (e.g. arithmetic coding or Huff-
man coding) or other techiques such as Vector Quantization
(VQ) . This is the basic approach of many proprietary and
standardized audio coding algorithms such as AC-3 and the
MPEG-2 AAC which is a good representative of the current
state-of-the-art in high quality audio coding [4].

In general, perceptual audio coders are signal adaptive with
respect to the stationarity of the signal in a perceptual sense.
In fact, non-stationary signals invoke the HAS attention pre-
dominantly to the time detail of the audio signal while sta-
tionary signals invoke he HAS attention predominantly to the
frequency detail fo the audio signal. The traditional function-
alities addressed by current audio coding standards are high
compression ratio, low delay coding, good error resilience and
bit-stream scalability. Thus, traditionally, the audio signal
is regarded and coded as a single entity with time-varying
time/frequency energy distributions.

However, the race for new advances is audio coding is on,
seeking bit rates for the transparent coding of an arbitrary
monophonic audio signal lower than 64 Kbit/s (which appears
to be a rather assymptotic limit difficult to reach using per-
ceptual coding), and seeking non-conventional functionalities
such as:

e easy semantic segmentation, classification and access to
audio material using information naturally embedded in
the compressed audio representation,

e easy audio modification in the compressed domain (e.g.,
pitch modification or time-scale modification).

These functionalities are particularly interesting in the light
of the forthcoming MPEG-7 standard whose objective is to
standardize a description of audio/visual information allowing

its easy classification, access and retrieval [5] I. This is a
desirable feature for example in the context of digital libraries.

This new trend in high quality audio coding has recently
started to be addressed by a new generation of audio coders
that look into the audio signal in a semantic sense, trying to
isolate individual signal components and assigning to each one
the most efficient and appropriate coding tools (also because
the associated psychoacoustic rules may differ significantly).
For example, ASC [6], a former MPEG-4 candidate, is a per-
ceptual audio coder that combines the parametrization of an
existing relevant harmonic profile in the audio signal (within
the analysis/synthesis framework of the coder) with a percep-
tually based quantization technique in order to reach good
coding quality for both resolved and unresolved partials [7].

Other coders implement a decomposition of the audio signal
typically in three individual components: sinusoids, station-
ary noise, and non-stationary noise (transients) [8, 9]. Each
component is estimated, is parametrized, and is removed (i.e.
subtracted) from the original signal, creating a residual that
undergoes further analysis and parametrization regarding the
remaining signal components, as illustrated in Fig. 2.
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Fig. 2: Parametrization of individual signal components.

We recognize the technical advantages of this approach as
well as its merit in fostering MPEG-7 oriented applications
and functionalities. In this perspective, we present the modi-
fications introduced in the structure of an MDCT based per-
ceptual audio coder so as to:

'http://mpeg.telecomitalialab.com/standards/mpeg-7/mpeg-
7.htm
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e remove sinusoidal components from the MDCT spec-
trum,

e combine sinusoidal subtraction with spectral envelope
normalization prior to quantization of the residual.

This approach is illustrated in Fig. 3. The reason for consid-
ering the MDCT as the filter bank used for the decomposition
of the audio signal prior to quantization according to percep-
tual criteria, is due to the fact that the MDCT is the most
accepted and commonly used filter bank in audio coding.

The advantages of implementing spectral envelope normal-
ization have been addressed by other publications and have
been adopted in specific coding algorithms such as Twin-VQ
[10, 11]. The feasibility of modeling sinusoidal components
and effectively subtract them from the MDCT spectrum, as
suggested in Fig 3 c), has been shown in a recent paper [12].
This paper also shows how to combine spectral envelope nor-
malization with sinusoidal subtraction, as suggested in Fig 3
d).

The importance of isolating and coding separately quasi-
stationary sinusoidal components is supported by a study on
typical audio material that has revealed that using analysis
audio frames having a duration of 23 ms., more than 80% of
all audio frames are quasi-stationary and exhibit at least three
relevant tonal components harmonically related [7]. Besides
the possibility of using dedicated coding tools and psychoa-
coustic rules specific to the nature of these components, the
parametric coding of sinusoidal components is also basic to
any approach of semantic interpretation and access to com-
pressed audio material.

The structure of this paper is as follows. In section 2 we briefly
review the theory of sinusoidal modeling and subtraction in
the MDCT domain. In section 3 we address spectral envelope
normalization using cepstral analysis and in the perspective of
its combination with spectral subtraction. In section 4 we de-
scribe the complete algorithm insuring perfect reconstruction
and illustrate the effectiveness in the MDCT frequency do-
main of the spectral subtraction technique. The implications
of combining spectral envelope normalization with spectral
subtraction are also discussed. In section 5 we address the
problem of quantizing the parametric information and coding
the residual. Finaly, in section 6 we present the main conclu-
sions of this paper and point to directions of future evolution
of our research.

SINUSOIDAL MODELING AND SUBTRACTION
IN THE MDCT DOMAIN

Most known approaches to sinusoidal modeling implement si-
nusoidal estimation and synthesis using an analysis/synthesis
framework different from that used to code other signal com-
ponents. Furthermore, both the subtraction of sinusoids from
the original signal in the encoder, as well as their addition in
the decoder back to the remaining synthesized or decoded
components, is implemented in the time domain. This ap-
proach is illustrated for the encoder side, in Fig. 4. In
this figure, the module responsible for the discrete-time /
discrete-frequency transformation (DT/DF), typically uses
zero-padding to improve the frequency resolution of the anal-
ysis and estimation process [13]. The module responsible for
the estimation and parametrization frequently involves iter-
ative procedures such as matching pursuit [14] or maximum

SINUSOIDAL MODELING IN MDCT DOMAIN

likelihood. Finally, the module responsible for the synthesis of
sinusoidal components in the discrete-time domain typically
uses the MCAulay and Quatieri sinusoidal addition method
[15].

Given that our target is real-time implementation, we want

in our approach to adopt a solution that:

e does not need to switch between time and frequency do-
main in the analysis and synthesis process of sinusoidal
components,

e is non-iterative,

e avoids zero-padding and extended FFT computation,

e whose computational cost is modest.

A solution satisfying these requirements has been developed
[16, 12] that is based on the decomposition of the computation
of the MDCT filter bank in two steps allowing the estimation
of phase [7]. This is represented in Fig. 5. In this figure,
Xo (k) represents the coefficients of the (complex) Odd-DFT
transform (ODFT) which is defined as:

Rt or 1
Xo(k) = Y h(n)z(n)e™d N kt2)n, (1)
n=0

The coefficients of the MDCT are then obtained as
X (k) = Re{Xo(k)}cos (k) + Sm {Xo(k)}sinb(k) (2)

where 0(k) = % (k+3) (1+ ).

Fig. 5: A convenient computation of the MDCT filter
bank allowing the extraction of phase.

As assumed in [12], we will also consider in this paper that
the time analysis window h(n) is defined as:
m 1
h(n) = sin — - 3
(n) = sin <-(n + ), 3)
0<n<N-1.

This window is particularly convenient since it satisfies the
perfect reconstruction requirement of the MDCT filter bank
and in addition, when combined with the ODFT, it allows
the simplification of a number of useful results permitting:

e the accurate estimation in the ODFT frequency domain
of the frequency, magnitude and phase of sinusoidal com-
ponents, as detailed in [16],

e the accurate synthesis in the ODFT frequency domain
of a few spectral lines representing the most significant
part of a sinusoidal component and using only one set of
parameters (frequency, magnitude and phase).
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A few possible approaches of parametrization of the MDCT spectrum prior to quantization:
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parametrization, b) parametrization of the spectral envelope, ¢) parametrization of sinusoidal components, d) com-
bined parametrization of the spectral envelope and sinusoidal components.

These results can be better illustrated using Fig. 6. This
figure represents three coefficients of the ODFT filter bank
(k=4£—-1,k=1¢,and k = £+ 1), when its input is a single
sinusoid whose frequency is wo and that multiplied by the time
analysis window (3). In the frequency domain, this case can
be seen as a sampling of the frequency response of the time
analysis window, H (w), when it is modulated to the frequency
wop. It should be noted that as the width of the main lobe of
the frequency response of the time analysis window is 67/N,
where N is the length of the ODFT or MDCT transform,
and given that the frequency separation between two adjacent
spectral lines is 27r/N, the main lobe is represented by three
spectral lines.

It is shown in [16] that using a convenient approximation
to H(w), it is possible to accurately synthesize (and there-
fore subtract) the three ODFT spectral lines that fall within
the main lobe of the frequency response of the time analysis
window. In the case of a sinusoidal component, these three
ODFT lines correspond to the stongest ones and their sub-
traction from the original spectrum, as suggested in Fig. 7,
leads to an effectively flattened spectrum. Using equation
(2), this spectral subtraction operation can also be extended
to the MDCT domain, as illustrated in Fig. 8.

The effectiveness of the processing implied in Figs. 7 and 8
can be illustrated using a short segment of a trumpet solo
music file extracted from the SQUAM compact disc [17] and
whose time representation is depicted in Fig. 9. Taking
N = 1024, the short-time ODFT and MDCT power spectral
densities corresponding to the indicated audio segment are
represented in Fig. 10. It can be seen that the MDCT power

spectral density is upper bounded by that of the ODFT [7].
This figure also denotes the center position of 26 sinusoidal
components that have been found to be harmonically related.

A demonstration Matlab command file 2 published jointly
with the paper [12] has been used to obtain the ODFT and
MDCT residuals after spectral subtraction.

The ODFT residual corresponding to the processing of Fig. 7
is depicted in Fig. 11. It should be noted that only three spec-
tral lines per sinusoid are synthesized and subtracted from the
original (complex) ODFT spectrum.

The MDCT residual corresponding to the processing of Fig.
8 is depicted in Fig. 12. As in the previous case, only three
spectral lines per sinusoid are synthesized and subtracted
from the original (real) MDCT spectrum.

These figures show that the main peaks of the spectrum are
effectively flattened and this is a very important feature in an
audio coder using Huffman encoding of vector quantization
since large spectral peaks generally imply a penalty on the
coding efficiency.

SPECTRAL ENVELOPE NORMALIZATION

Effective normalization of the spectral representation of the
audio signal is a desired feature in a perceptual audio coder.
For example, Twin-VQ, a successful coding proposal to the
MPEG-4 standardization activities, relies on four levels of
normalization of the MDCT spectrum (by the envelope of

2http://www.inescn.pt/~ajf/waspaa01l/flattening.html.
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Fig. 4: Typical approach in modeling sinusoids: after the estimation of their frequency, magnitude and phase, the
sinusoids are synthesized in the time domain and are subtracted from the original signal.
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Fig. 7: Modeling of sinusoids in the complex ODFT domain: after the estimation of their frequency, magnitude and
phase, the sinusoids are synthesized in the frequency domain and are subtracted from the original ODFT spectrum.

LPC analysis of the input signal, by pitch components captur-
ing the largest spectral power in the MDCT domain residual,
by a Bark-scale fine structure of the MDCT domain resid-
ual, and finaly by the average global power of the flattened
MDCT coefficients), prior to weighted interleave vector quan-
tization, in order to maximize the quantization/coding gain
of this technique [10].

In order to combine sinusoidal subtraction with spectral en-
velope normalization, we consider cepstrum based envelope
modeling that is derived as illustrated in Fig. 13 and as ex-
plained in [12]. The envelope model is obtained by short-pass
liftering the real cepstrum to 13 coefficients, when N = 1024.

An example is illustrated in Fig. 14. The upper signal rep-
resents the ODFT spectral density of a short audio segment
and the smooth curve just above it represents the spectral en-
velope model obtained according to the algorithm of Fig. 13.
The normalization of the ODFT spectrum using this model
(which corresponds to a spectral division as in Fig. 3b) or,
equivalently, to a subtraction in the log domain) results in the
signal depicted in the lower part of Fig. 14. As expected, the
variance of this signal is much lower that that of the original
signal, and this is convenient for coding purposes. The vari-
ance of the differences between the magnitudes of the high-
est spectral peaks is also lower which is a strong reason sug-
gesting that spectral envelope normalization should preceed
sinusoidal subtraction®. However, as three spectral lines are

3We note here that the parameters identifying a sinuoid and
that must be transmitted to the decoder are its frequency, mag-

synthesized using only one set of parameters, the spectral nor-
malization must be implemented using a model that is very
smooth on the frequency region involving the three spectral
lines, otherwise significant errors due to spectral envelope de-
normalization would arise. This makes the cepstrum envelope
model more convenient that for example an LPC based spec-
tral envelope model [12].

ENCODING AND DECODING SYSTEM

The complete algorithm allowing spectral normalization by a
suitable spectral envelope model and allowing accurate spec-
tral subtraction while insuring perfect reconstruction in the
absence of quantization, is represented in Fig. 15 for the en-
coder side, and in Fig. 16 for the decoder side. We note in
this context that perfect reconstruction can only be achieved
when the algorithm of Figs. 15 and 16 is included in the
overlap-add procedure underlying the MDCT filterbank so as
to insure cancellation of time-domain aliased terms [18]. This
is due to the fact that the “ODFT2MDCT” operator, which
is represented by equation 2, is linear but not invertible and
thus even in the absence of quantization, spectral normaliza-
tion and subtraction, &(n) # z(n).

This is also the reason why in the decoder the sinusoidal ad-
dition must take place in the MDCT domain (instead of the
ODFT domain). In contrast, the inverse spectral envelope

nitude and phase.
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Fig. 8: Modeling of sinusoids in the real MDCT domain: after the estimation of their frequency, magnitude and
phase in the complex ODFT domain, the sinusoids are synthesized in the frequency domain and are subtracted from

the original MDCT spectrum.
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Fig. 15: Encoder section of the algorithm allowing spectral envelope normalization and subtraction of sinusoidal
components. For each set of parameters w, A, ¢, three spectral lines are synthesized and subtracted from the complex

ODEFT spectrum.

normalization can be indistintly implemented in the MDCT
or in the ODFT domain.

A clear adavntage of the spectral subtraction technique is
that using accurate estimates for the frequency, magnitude
and phase of L sinusoidal components of the ODFT spectrum,
it is possible to accurately subtract 3L spectral lines in the
complex ODFT or real MDCT spectra, if the audio signal is
quasi-stationary. As sinusoidal components consist generally
in strong spectral peaks, as a consequence of this technique,
the spectrum will be effectively flattened as shown before.

Taking the example of Fig. 10, the MDCT residual obtained
after spectral envelope normalization and sinusoidal subtrac-
tion is depicted in Fig. 17. This residual corresponds to the
normalization of the residual depicted in Fig. 12 by the spec-
tral envelope model.

As pointed out in [12], it should be noted that effective spec-
tral subtraction is only achieved when the spectral enevelope

AES 112™ CONVENTION, MUNICH, GERMANY, 2002 MAY 10-13

model is very smooth in the frequency region involving the
three spectral lines that are synthesized using only one set of
parameters w, A, ¢. As indicated before, this is the substan-
tive reason why a cepstrum based spectral envelope model
has been selected in detriment of other choices, namley LPC
based spectral envelope modeling.

THE CODING OF THE RESIDUAL

As presented in the previous section, the complete encoding
and decoding system featuring spectral envelope normaliza-
tion as well as sinusoidal subtraction in the MDCT domain,
insures perfect reconstruction in the absence of quantization
of the residual, even if the parameters regarding spectral en-
velope and the frequencies, magnitudes and phases of the si-
nusoids are quantized. This means that the shaping of the
quantization noise can be controled by a careful quantization
of the residual.
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Fig. 16: Decoder section of the algorithm allowing spectral envelope normalization and subtraction of sinusoidal
components. For each set of parameters w, 4, ®, the decoder synsthesizes three spectral lines in the MDCT domain

which are added back to the flattened spectrum.

6w /N

Fig. 6: For each sinusoid, three spectral lines can be
reliably synthesized that fall within the main lobe of the
frequency response of the analysis window, centered on
the frequency of the sinusoid.

Preliminary tests have revealed that if N = 1024, 13 cep-
stral coefficients are sufficient to model the spectral envelope.
Furthermore, by quantizing the first two cepstral coefficients
with 7 bits and the remaining ones with 5 bits, a deviation less
than 2 dB is achieved relative to the non-quantized version of
the spectral envelope.

These preliminary test have also revealed that when quantiz-
ing the parameters of the sinusoids, an acceptable accuracy
is reached if the frequency is linearly quantized to a float us-
ing 12 bits, if the magnitude is logarithmically quantized to 6
bits, and if the phase (in the range [, «[) is linearly quan-
tized to 5 or preferably to 6 bits. The practical case of an
harmonic structure of sinusoids is more interesting from the

05F q

NORMALIZED AMPLITUDE

-05F 4

I I I I I I I I I I
0 100 200 300 400 500 600 700 800 900 1000
TIME SAMPLES

Fig. 9: Short time segment of a trumpet signal.

point of view of coding since in this case only the frequency of
the fundamental needs to be coded. In order to avoid signifi-
cant frequency errors for high-order partials, the frequency of
the fundamental needs to be coded with more than 12 bits.
Our tests have indicated that 16 bits is a alreaday a conser-
vative choice even for harmonic structures containing about
60 partials.

The more appropriate approach to code the residual consider-
ing the balance of the information devoted to code spectral en-
velope and sinusoidal parameters, is still a matter of research.
However, an evaluation of the impact of the sinusoidal sub-
traction on the statistical characteristics of the residual has
been made. The two circumstances under study correspond
to the two cases ilustrated in Fig. 3b) and 3d). The effects
of quantizing the parameters related to the spectral envelope
as well as the frequencies, the magnitudes and the phases of
the sinusoids are also included in this evaluation.

An audio file of about 60 sec. and including many differ-
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Fig. 10: ODFT (solid line) and MDCT (dotted line)
power spectral densities of a trompet music signal. The
vertical lines at the bottom of the figure indicate the inte-
ger position of the frequency of 26 sinusoids harmonically
related that have been identified in the signal.

ent short audio excerpts (such as Sting, Suzanne Vega, cas-
tanets, harpsichord, harmonica, acoustic guitar, male and fe-
male speech) has been used for the test.

The residual in either case under test (with or without si-
nusoidal subtraction) has been magnified by 20 dBs for rep-
resentation purposes and as a consequence, the probability
distribution for the signed magnitude of the MDCT residual
is evaluated in the range [-64, 64]. The two values on the
lower and upper limits of this interval in fact represent the
probability of the MDCT coefficients being < —64 or being
> 64, respectively.

The probability distribution for the case considering only
spectral envelope normalization (corresponding to the case
of Fig. 3b) ) is represented if Fig. 18, and the probabil-
ity distribution for the case including both spectral envelope
normalization and spectral subtraction (corresponding to the
case of Fig. 3d) ) is represented in Fig. 19. In each of theses
figures the solid line represents the actual probability distri-
bution derived from the audio data, while the dotted line rep-
resents a Gaussian pdf model and the dashed line represents
a Laplacian pdf model.

As results clear from the two figures, the sinusoidal subtrac-
tion has two major beneficial effects. On one hand, the proba-
bility of occurring large values for the MDCT residual reduces
significantly, as the cumulative probability for —64 and +64
drops abruptly. On the other hand, the variance of the resid-
ual also increases significantly if sinusoidal subtraction is not
performed. If fact, considering the Gaussian and Laplacian
models in the two cases, the variance degradation is similar
for the two models and in the order of 34%.

A final observation regards the shape of the probability distri-
butions. In fact, considering spectral envelope normalization
and sinusoidal subtraction, the probability distribution of the

SINUSOIDAL MODELING IN MDCT DOMAIN

110

100 - . ,

90 il

80 : 1

SPECTRAL DENSITY (dB)

| il

20 40 60 80 100 120 140
FREQUENCY LINES

Fig. 11: ODFT spectrum before (dotted line) and after
(solid line) sinusoidal subtraction.

MDCT residual approaches the Laplacian distribution and
this has important implications for the design of an appropri-
ate quantizer [3]. This particular issue will be the object of
our future research.

CONCLUSION

In this paper we have presented a techique of spectral flatten-
ing in the MDCT frequency domain that combines spectral
envelope normalization with spectral subtraction of sinusoidal
components. The performance of the technique has been il-
lustrated with real world signals. We believe the benefits of
the technique are twofold. On one hand it has the poten-
tial to improve the coding efficiency of perceptual coders by
means of an appropriate quantization of the flattened MDCT
residual that exhibits a reduced variance and a pdf shape ap-
proaching that of a Laplacian model. On the other hand,
by embedding in a natural way parametric information in the
compressed representation and regarding spectral envelope as
well as sinusoids, the opportunities of semantic access and
possibly manipulation of compressed audio are real and de-
sirable in the perspective of MPEG-7 oriented fucntionalities
and applications.
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Fig. 17: The lower part represents the short-term power
spectral density of the residual obtained after spectral
envelope normalization and sinusoidal subtraction of the
signal whose short-term power spectral density is repre-
sented in Fig. 10.
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Fig. 18: The solid line represents the probability distri-
bution of the level of the MDCT residual obtained af-
ter spectral envelope normalization. The values at —64
and +64 accumulate the probablity of the MDCT resid-
ual being respectively less that —63 and higher than 63.
The dotted line represents a Gaussian pdf model with
o = 5.5 and the dashed line represents a Laplacian pdf
model with o = 9.8.
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Fig. 19: The solid line represents the probability distri-
bution of the level of the MDCT residual obtained after
spectral envelope normalization and sinusoidal subtrac-
tion. The values at —64 and +64 accumulate the proba-
blity of the MDCT residual being respectively less that
—63 and higher than 63. The dotted line represents a
Gaussian pdf model with ¢ = 4.1 and the dashed line
represents a Laplacian pdf model with o = 7.3.
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