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ABSTRACT

This paper presents new results improving by a factor of
10 the accuracy of an ODFT-based frequency estimation al-
gorithm. These results are shown to be robust to the in-
fluence of additive noise and compare favorably to other
non-iterative frequency domain estimation algorithms. A
perspective is given on possible application areas, namely
those involving real-time constraints.

1. INTRODUCTION

Accurate frequency estimation is required in many different appli-
cation scenarios including speech coding [1], speech recognition
[2], automatic transcription of music, special effects in audio, mul-
timedia indexing and real-time interactive multimedia systems. In
addition, in recent years, a number of audio coding technologies
have been developed that perform a decomposition of the audio
signal into sinusoids and noise, prior to coding, and therefore rely
on accurate frequency estimation [3, 4, 5, 6].

Many frequency estimation algorithms have been proposed in
the literature and can be broadly classified as time-domain algo-
rithms and as frequency-domain algorithms. Time-domain algo-
rithms are mainly based on auto-correlation measures (e.g., [7])
and are frequently used in the context of pitch estimation of speech
signals [2]. These methods have an inherent difficulty in dealing
with polyphonic signals (i.e., when different pitches occur simul-
taneously) and therefore in this case frequency-domain algorithms
are preferred. In turn, frequency domain algorithms can be further
classified into different categories as a function of the main un-
derlying approach, including cepstrum analysis, peak picking and
analysis, or phase analysis (e.g., time derivative of the phase) of a
Fourier representation of the signal [8].

The context of our research presumes polyphony and presumes
that the frequency estimation must be carried out using a single au-
dio frame and associated Fourier representation, which means time
derivative of the phase can not be implemented. As a consequence,
we focus on spectral peak picking and analysis techniques. As in
[9], we presume in this paper the Odd-DFT (ODFT) transforma-
tion and time windowing by the square root of a shifted Hanning
window [4].

Peak picking and analysis algorithms can be window agnostic
(such as the parabolic interpolation or the triangle algorithms [10])
or may take into consideration (and advantage of) the frequency
response of the time analysis window (FRTAW). These algorithms
are likely to deliver more accurate frequency estimates as it was
shown in [9]: for similar conditions, the frequency estimation error

of a window-aware algorithm can be about six times smaller than
the estimation error of a window-agnostic algorithm (the parabolic
algorithm [11]).

This paper presents new results improving the technique pre-
sented in [9] in two important ways: accuracy and robustness to
noise. In fact, it has been shown in [9] that the frequency of a sinu-
soid can be estimated with an error less than 1% of the bin width,
in the absence of noise, and using a single closed form expression.
In this paper we show how to reduce this estimation error to less
than 0.1% of the bin width, while improving simultaneously the
robustness to noise.

This paper is organized as follows. In section 2 we present the
basic signal analysis framework and detail the main approximation
criteria. In section 3 we review the single-rule frequency estima-
tion model that has been presented in [9]. In section 4 we derive
two new rules and explain the construction of an improved three-
rule frequency estimation model. In section 5 we characterize the
performance of the new frequency estimation model and evaluate
its robustness to noise in section 6. Section 7 presents the main
conclusions of this paper.

2. ANALYSIS FRAMEWORK

Given a discrete signal represented by
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where A represents the magnitude of a sinusoid, � and 	� repre-
sent respectively the integer part and the fractional part of the fre-
quency of the sinusoid on a DFT-type frequency bin scale whose
periodicity is N, � represents the phase of the sinusoid, and ����
represents additive noise; the frequency estimation problem con-
sists in finding the values of � and 	� after ���� has been win-
dowed by 
��� and transformed to the frequency domain by means
of an ODFT of size � :
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When ���� and 
��� are real, ����� � ��

��� � 
� ��, where
� denotes complex conjugation. As explained in [9], in our frame-
work the ODFT is used in a 50% overlap-add scheme achieving
perfect reconstruction, which requires a special time window such
as the square root of a shifted Hanning window [4]:
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which we presume in this paper.
As shown in [9], the integer � is readily extracted from the

ODFT magnitude spectrum since it corresponds to the bin index
of a local maximum. Ignoring the influence of the negative part
of the spectrum, which is a fair assumption unless � is too close to
0 or to �

�
� 
, the fractional part of the sinusoid frequency, 	�,

can be estimated from the ODFT spectral coefficients surrounding
the spectral coefficient with index � and corresponding to a local
maximum. In fact, given that each channel of the ODFT filter
bank is obtained by modulating the FRTAW,����, to the discrete
center frequencies � �
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; the
magnitude of each ODFT spectral coefficient (or bin) depends on
����. Thus, 	� can be estimated by an appropriate relation of the
ODFT bins surrounding a local maximum. In this context we take
���� �
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����, where 
��� is given by equation (3).
The normalized magnitude of ����, which we represent as

�������, can be obtained as [9]:
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This equation is not directly tractable because of the pole-zero can-
cellation at frequencies � � �

�
and � � � �

�
. However this prob-

lem can be circumvented by considering an approximation to the
main lobe of the FRTAW:
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where � is a real constant. Equation (5) can therefore be used to
relate the ODFT bins surrounding a local maximum and extract,
as a result, an estimate of 	�.

3. SINGLE-RULE ESTIMATION MODEL

If � is the index of a local maximum in the ODFT magnitude spec-
trum, the ratio of the magnitudes of the ODFT spectral coefficients
in subbands � � �� 
 and � � �� 
 are obtained as [9]:
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Using the approximation (5), it can be shown that equation (6)
leads to [9]:
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The value of� has been adjusted to ��������� ir order to optimize
the estimation error in the minmax sense, when ��� � 	� � 
�� .
In this case and in the absence of noise, the maximum estimation
error has been found to be less than 1% of the bin width, and to be
essentially independent of N, �, A and � [9].

In practice it has been verified that equation (7) delivers very
accurate frequency estimates, except when there is an influence of
noise such that ����� � 
�� does not approach ��� as it should
when 	� approaches 0.0, and ������ 
�� does not approach ���
as it should when 	� approaches 1.0.

4. THREE-RULE ESTIMATION MODEL

In order to make the estimation process less vulnerable to the influ-
ence of noise, the (three) strongest spectral lines in the ODFT mag-
nitude spectrum and falling within the main lobe of the FRTAW
(whose width is ���� , [9]), should be used. Taking into consid-
eration the relative magnitudes of the three ODFT spectral lines
(falling within the main lobe of the FRTAW) as a function of 	�
[4, 9], it becomes clear that a new formula should relate ������

�� and ������� when 	� � ���, and that another new formula
should relate ������� and ����� � 
�� when 	� � ���. Follow-
ing an analytical work similar to that reviewed in section 3, it can
be concluded that in the former case, if we represent the associated
relation of magnitudes as:
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the second frequency estimation formula is obtained as:
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and in the latter case, if we represent the associated relation of
magnitudes as:
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then the third frequency estimation formula is obtained as:
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The constants � and � in these new formulas must be optimized
so as to minimize the estimation error. It should be noted that
these three formulas represent all possible combinations of two
magnitudes out of the three magnitudes describing the (ODFT)
sampled main lobe of the FRTAW.

Attempts to build a two-rule estimation model using equation
(9) if 	� � ���, and equation (11) if 	� � ���, have revealed
that the optimal estimation error in the least squares (LS) sense is
obtained as 0.72% of the bin width, and that the optimal estimation
error in the minmax sense is obtained as 0.46% of the bin width.
Either case represents already an improvement over the single-rule
estimation model reviewed in the previous section.

These new results have also revealed that the largest estima-
tion error resulting from the two-rule estimation model occurs in
the vicinity of 	� � ���. Since this is the region where the estima-
tion error resulting from the single-rule estimation model (equa-
tion (7)) is smaller, it makes sense to build a three-rule estimation
model involving equation (9) when ��� � 	� � ���� ���, equa-
tion (7) when ��� � ��� � 	� � ��� � ���, and equation (11)
when ��� � ��� � 	� � 
��. A study was conducted on the
optimization (in the LS sense) of the estimation error as a function
of �, which represents the width of the rule centered on 	� � ���.
The results of this study are depicted in Fig. 1 when � varies in
the range ����	 
���. It should be noted that when � � ��� our
model reduces to the two-rule model (equations (9) and (11)), and
that when � � 
�� our model reduces to the single-rule model
(equation (7)).
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Figure 1: Maximum frequency estimation error (using LS opti-
mization) as a function of the width of rule centered on 	� � ���.

5. PERFORMANCE OPTIMIZATION AND EVALUATION

Fig. 1 reveals that the best performance of the three-rule model is
achieved when � is near ���, specifically � � ����, as can be con-
cluded after a detailed analysis of the problem. Using this value,
the optimization of the (global) estimation error, in the LS sense,
leads to a maximum frequency estimation error of 0.14% of the bin
width, when 	� varies in the range ����	 
���. Using the minmax
optimization criterion, the maximum frequency estimation error
reduces even further to 0.096% of the bin width (about 0.1%), as
can be seen in Fig. 2. Table 1 indicates the optimal value found
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Figure 2: Frequency estimation error of the three-rule estimation
model after minmax optimization.

for parameters G, F and H, according to the optimization criterion.
The ideal and actual fractional frequency estimation functions as

a function of 	�, are represented in Fig. 3. We have considered in

Table 1: Optimal values of the G, F, and H parameters as a func-
tion of the optimization criterion (least-squares or minmax).

LS minmax
20G 29.08 29.00
20F 32.82 32.75
20H 32.82 32.75
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Figure 3: Ideal (dashed line) and actual (solid line) frequency esti-
mation functions as a function of 	�.

this figure the optimal G, F, and H parameters resulting from the
minmax optimization criterion. This figure reflects a significant
improvement over the results presented in [9]. These results are
fairly independent on the values of N, �, A and �, in equation (1).

In order to compare these results with other (non-iterative)
peak picking and analysis algorithms, we have implemented the
parabolic interpolation and triangle algorithms as described in [10].
Under test conditions similar to those used in this paper, we have
concluded that the maximum fractional frequency estimation error
of the parabolic interpolation algorithm is in the order of 4.4% of
the bin width (which is a little better than the 5.7% error reported
in [11]), while that of the triangle algorithm is in the order of 20%
of the bin width. These results just confirm that the performance
of a window-aware algorithm are far better than the performance
of window-agnostic algorithms.

6. ROBUSTNESS TO NOISE

The influence of additive white gaussian noise (���� in equation
(1)), on the performance of the frequency estimation, has been
evaluated in two cases: using the single-rule estimation model,
and using the three-rule estimation model. The Signal-to-Noise
ratio (SNR) relating the average power of a single sinusoid and
the average power of the noise, was forced to vary between 70 dB
and -10 dB. These two limits correspond to extreme situations: in
the former case the influence of the noise is negligible, and in the
latter case the influence of the noise is very strong. The results
are represented in Fig. 4. This figure shows that, as expected, the
performance of the three-rule estimation model is always superior
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Figure 4: Performance of the frequency estimation process as a
function of the SNR.

to that of the single-model estimation rule, notably when the noise
is higher. In order to understand better this conclusion, Fig. 5 rep-
resents the ideal (dashed line), the actual single-rule frequency es-
timation function (dotted line), and the actual three-rule frequency
estimation function (solid line), when the SNR is 0 (zero) dB. In
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Figure 5: Ideal (dashed line), single-rule (dotted line) and three-
rule (solid line) frequency estimation functions when the SNR is
zero dB.

can be concluded from this figure that the single-rule estimation
model performs especially poorly when 	� is close to 0.0 or to
1.0, while the three-model estimation rule performs without such
a bias when 	� varies in the range ����	 
���. This conclusion is
valid for all SNR values and confirms that the three-rule estimation
model is extremely robust to noise.

7. CONCLUSION

In this paper we have presented new results allowing to improve by
an order of magnitude the performance of a previously published
frequency estimation algorithm that operates in the frequency do-
main, that presumes a time window corresponding to the square
root a shifted Hanning window, and that is non-iterative. The new
algorithm was shown to be robust to the influence of additive noise,
and is suited to real-time applications, notably in the context of
high-quality audio analysis, coding, modification, and bandwidth
extension [12].
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