
Audio Engineering Society 

 
Convention Paper 

Presented at the 123rd Convention 
2007 October 5–8 New York, NY, USA 

The papers at this Convention have been selected on the basis of a submitted abstract and extended precis that have been peer 
reviewed by at least two qualified anonymous reviewers. This convention paper has been reproduced from the author's advance 
manuscript, without editing, corrections, or consideration by the Review Board. The AES takes no responsibility for the contents. 
Additional papers may be obtained by sending request and remittance to Audio Engineering Society, 60 East 42nd Street, New 
York, New York 10165-2520, USA; also see www.aes.org. All rights reserved. Reproduction of this paper, or any portion thereof, 
is not permitted without direct permission from the Journal of the Audio Engineering Society. 

A Novel Automatic Noise Removal 
Technique for Audio and Speech Signals 

Harinarayanan.E.V1, Deepen Sinha2, Shamail Saeed3, and Anibal Ferreira4

1 ATC Labs, New Jersey, U.S.A 
hari@atc-labs.com 

2 ATC Labs, New Jersey, U.S.A 
sinha@atc-labs.com 

3 ATC Labs, New Jersey, U.S.A 
shamail@atc-labs.com 

4 University of Porto, Portugal & ATC Labs, New Jersey, U.S.A 
ajf@atc-labs.com 

ABSTRACT 

This paper introduces new ideas on wideband stationary/non-stationary noise removal for audio signals. Current 
noise reduction techniques have generally proven to be effective, yet these typically exhibit certain undesirable 
characteristics. Distortion and/or alteration of the audio characteristics of primary audio sound is a common 
problem. Also user intervention in identifying the noise profile is sometimes necessary. The proposed technique is 
centered on the classical Kalman filtering technique for noise removal but uses a novel architecture whereby 
advanced signal processing techniques are used to identify and preserve the richness of the audio spectrum. The 
paper also includes conceptual and derivative results on parameter estimation, a description of multi parameter 
Signal Activity Detector (SAD) and our new found improved results. 

1. INTRODUCTION 

In many commercial applications like broadcast and 
telecommunication field audio and/or speech signals 
are often degraded due to the presence of noise which 

can be either stationary or non-stationary. Persistence 
of background noise, like a hiss or a buzz, are 
examples of stationary noise. Presence of such noise 
for longer duration could severely lower the 
intelligibility and perceived quality of any 
speech/audio signal. On the other hand non-stationary 
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or transitory noise is short lived and in many cases 
occurs with a sudden boost in signal energy. Effects 
of transitory noise such as passing siren or 
background clapping sounds in a live commentary 
can also be disconcerting to the listener. In digital 
systems presence of noise has a secondary negative 
impact in that it may severely degrade the 
performance of low bit rate speech/audio coding 
schemes or speech recognition schemes which may 
be in use. Reduction and/or elimination of both 
stationary and non-stationary noises have therefore 
been found to be desirable in a whole range of 
applications. In the past, a number of different 
techniques [1],[3],[5],[6],[7] have been proposed to 
counter additive white noise for audio signals. These 
popular techniques fall under the broad classification 
of being either a time domain or a frequency domain 
based technique. 

Most of the commercially available noise reduction 
tools use frequency domain based spectral 
subtraction technique. The theory of spectral 
subtraction involves noise spectrum estimation and 
subtraction on individual frequency bins on a frame 
by frame basis. In general, the inaccuracy involved in 
noise spectrum estimation and also, noise variance 
within a frame leaves prints of audible artifacts like 
annoying musical noise [3],[8] or short sinusoidal 
impulses [8] in the processed audio with varying 
frequencies for every frame. On the other hand, time 
domain noise filtering techniques use adaptive filters 
such as Kalman filter, Adaptive Weiner filter. 
Kalman filtering has often been investigated by 
authors for audio noise reduction with renditions 
[1],[6],[7].  The niche in using Kalman filter for noise 
reduction comes only with an accurate estimation of 
signal and noise parameters. These also often 
introduce unpleasant distortion in the signal such as 
increased gargliness in voices.  In either class of 
algorithms the characteristics of the audio (such as 
perceived bandwidth and openness) is often 
adversely affected Furthermore, desirable level of 
noise reduction is only achieved with a user 
intervention in terms of selecting a suitable noise 
profile or identifying regions of the signal where 
noise is dominant, in effect these are two or more 
pass algorithms which are less suitable for real time 
applications. In this paper we introduce a novel noise 
reduction scheme that is designed around two core 
performance requirements. Firstly, the techniques 
achieves substantial noise reduction while preserving 
all the key audio characteristics of the primary signal 

sound and introduces minimal distortion to the 
primary sound. Secondly, identification of noise 
statistics is fully automatic and adaptive to any type 
of audio material. At the core of the proposed scheme 
is a perceptually optimized Adaptive Kalman 
Filtering algorithm. The first core performance 
requirement is achieved with an algorithm based on 
detailed frequency domain analysis, subtraction, and 
synthesis which helps preserve the richness of the 
original audio. The second performance requirement 
is achieved with the help of a new Signal Activity 
Detector and continuous update and validation of 
noise statistics. The rest of the paper is organized as 
follows: The second section introduces the 
architecture of the basic filtering model. The third 
section describes improved method for parameter 
estimation for Kalman filtering and we conclude by 
presenting results in the final section. 

2. NOISE FILTERING 

A high level architecture of the proposed generic 
noise filtering model is shown in Fig.1. The basic 
blocks of the architecture include a harmonic 
extraction block, a harmonic synthesis block, a Signal 
Activity Detector and a de-noising filter. The 
harmonic extraction along with harmonic synthesis 
preserves a subset of the harmonic structure of the 
original signal that is perceptually most significant. 
This technique helps in preserving the natural sound 
of the audio under interest. The noise removal 
algorithm works on the residual formed by this 
subtraction method. The processing of identifying 
perceptually significant subsets of harmonics is based 
on a detailed analysis of a frame of signal in both 
time and frequency domain. This analysis involves 
frequency domain perceptual modeling [5] and also 
an analysis of the voiced/unvoiced nature of the 
frame. 

2.1. Choice of Adaptive Filtering Algorithm 

The use of time domain filtering technique instead of 
frequency domain methods are for reasons stated 
under Section 1 like, artifacts distorting the original 
signal and also for the precision which is needed in 
the noise spectrum estimation. Among time domain 
techniques, Weiner filter is ideal for a short segment 
of 20-30 ms but, is not suited for non-stationary 
signals like audio. Though, an adaptive Wiener filter 
is optimum in the least-squares-sense, it does not 
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Figure 1: Architecture of Noise Reduction Module 

exploit situations when additional knowledge about 
the signal such as the speech production process is 
available. Therefore Kalman filter for noise filtering 
is adopted in our scheme. 

2.2. The Signal Model 

The basic model of the clean (desired) audio and the 
additive noise measurements (available audio) are 
described by the following state space equations: 

kkkk QXX +Φ=+ .1
 (1 ) 

kkkk
 (2 ) 

Where, 

kX  (n×1) process state vector at time   
kt

kΦ  (n×n) state transition matrix at time  
relating to 

1
 

k kX +kX

kQ      (n×1) process noise vector at time  
kt

kz     Scalar measurement at time  
kt

kH     (1×n) measurement vector at time relating        
 to  

kt

kX k

kr      Scalar measurement noise at time  
kt

The process noise vector and the scalar 
measurement noise are assumed to be zero mean, 
white (time-uncorrelated) noise sequences with 
covariance structures given by  and 
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2.3. Significance of the Harmonic 
Extraction Process 

As shown in Fig.1 Harmonic Extraction block 
constitutes a harmonic analysis, perceptual modelling 
and a harmonic subtraction block. This block serves 
dual purpose by preserving the perceptually 
significant harmonics thereby preserving the main 
signal component and also this extraction process 
reduces the computational complexity by shrinking 
the LPC matrix order which would otherwise require 
exhaustive LPC matrix on account of long term LPC 
coefficients.  

 
• Preserves the perceptually significant 

harmonic structure in the signal ensuring that 
it remains un-affected by the noise filtering 
process, thus ensuring that key natural 
characteristics of the audio are preserved. 

 
• In the state space model, it is convenient and 

desirable to assume  to be a transition 
matrix corresponding to a Linear Predictive 
(LP) signal model [2]. This LP model in itself 
is generally not sufficient in ensuring that the 
resulting process noise, Qk, is uncorrelated 
white noise. For example a speech like signal 
typically involves both a long term as well as 
short term predictor to ensure suitable 
whitening. Similarly, for music signals, which 
can be quite rich in terms of their harmonic 
content, a very high order LP model may be 
necessary to ensure that the residual is 
sufficiently white. By introducing harmonic 

kΦ
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Figure 2: Kalman filter based noise reduction module 

 
subtraction we can conveniently eliminate the need 
for including a long term predictor in the 

kΦ model 
and also operate with a relatively small size LP 
model with its resulting numerical benefits. 
 

2.4. Signal Activity Detector  

The Signal Activity Detector (Fig.1) is a multi 
parameter based decision. The dependency of the 
algorithm on a multi parameter decision is to reduce 
the risk of a false alarm. From the architecture point 
of view signal activity decision plays a crucial role as 
the noise parameter ( R ) is updated only based on the 
decision of the detector, i.e, only for noisy frames. 
Fine tuning SAD is crucial as mentioned above, an 
aggressive SAD would be detrimental as the filter 
would filter even a signal as noise. On the other hand 
a conservative SAD decision would under filter the 
noise. The multi parameter decision of SAD 
discussed below has been fine tuned, in the 
implementation, with the goal of lowering the false 
positive duly because identifying signal as noise has a 
higher cost compared to a miss. 

2.4.1. Correlation  

Any Voice / Music signal exhibits characteristics of 
periodicity within a small window frame. Such 
signals with periodic nature are pinned by identifying 
periodic peaks on auto correlated input audio. 

2.4.2. Fricative Detection 

The auto-correlation based Signal Activity Detectors 
fair well except for those classes of genuine signals 
which are not periodic. Classic examples of such 
cases are fricatives, in the case of speech signals. 
From the studies of frequency domain envelope 
identification techniques [9] we employ a fricative 
detector to avoid filtering such fricatives. 

2.4.3. Energy 

The energy of the frame at analysis is expected to be 
higher than an approximate noise energy threshold. 
This threshold is set as a part of user setting – an 
approximate measure of expected noise. As this user 
parameter may not be an exact measure conservative 
decisions are taken based on the threshold input. 

A noisy frame fails all the three tests, evaluated in the 
top down order listed above. 

3. KALMAN FILTERING 

The block diagram of the proposed noise reduction 
module is shown in Fig.2. In this section, we discuss 
estimation of parameters for Kalman filtering. The 
solution to Kalman filter equations requires 
knowledge ofΦ , ,  and . As mentioned in 

section 2.4 we assume the transition matrix 
k kH Q R

kΦ (Eq.3) 
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to be based on a short term LP based signal 
production model. This matrix therefore has a simple 
sparse structure; the first row of the matrix is 
populated with order LP filter coefficients. The 
second row through row is populated by a shift 
operator whereby (i-1)th element of ith row is 1 and 
remaining elements are zero. These LP coefficients 
are calculated by running a LP analysis on a short 
frame of noisy audio. The matrix also follows a 
simple structure with a unit entry in its first row with 
the rest being zeros. 
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3.1. Signal and Noise Parameter Estimation 

Accuracy in the estimation of Q  and plays 
important roles in the stability of the Kalman filter. A 
wrong estimation of eitherQ  or could lead to an 
unstable filter. In our technique, we estimate the 
value of R during the portion of signal inactivity 
based on the decision from the VAD algorithm. In 
these frames the noise variance is updated as per 
Eq.4.  

R

new

                              (4) ( ) MzRR
M

i
iold 1+

 Where, α controls the influence of past variance on 
the updated value of noise variance and M is the 
frame size.  

The value of Q is continuously updated during the 
active signal frames. The formula to estimate Q  value 
is derived below. 

The assumed matrix structure has no influence 
on measurement values hence; it is dropped from 
Eq.2 at this stage of analysis. The measurement 
process (Eq.2) can be expanded as, 
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Eq.6 follows Eq.2. Substituting Eq.6 in Eq.5, Eq.5 
can be recursively written in terms of  as, 
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The above equation is a recursive reformulation of 
the basic audio model (Eq.1, 2).  

LP analysis on the measurement values is given by 
the following equation,  
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Where,  is the linear prediction of . Note, the LP 
coefficients in Eq.8 are not same as the coefficients 
in the signal model (Eq.7) because are calculated 
after a LP analysis on the measurements and not from 
the noise free audio. But, at this point of analysis we 
approximate both of these coefficients for the sake of 
a simple formulation. The LP residual ( v ) is 
calculated by subtracting Eq.8 from Eq.7. 
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The measurement noise and process noise are 
uncorrelated and also, the measurement noise is 
assumed to be white. This reduces the variance of 
Eq.9 to 

                                         (10) )1.(
1

2
var ∑

=

++=
N

i

i
lpcRQV φ

Where, is the variance of the random variable
varV v . 

With the measurement of residual variance and the 
knowledge of R  and , Eq.9 gives an estimate of Q . i

lpcφ

4. RESULTS 

The proposed algorithm was run on multiple stereo 
speech/music samples. We conducted a subjective 
measure on the database collection. The samples 
were acquired from various real life broadcast and 
communication setups with high level background 
noise with varying characteristics.  

In our implementation of the overall scheme LP filter 
of order 15 (for the transition matrix in the Kalman 
filter) was found to be sufficient for the entire range 
of audio and a frame length of 1024 samples with 
input sampling rate of 32Kbps was used. 

For subjective evaluation, a group of five expert 
listeners were asked to evaluate the samples against 
some of the commercially available noise removal 
modules. The other products that were put to test 
include Dart XP Pro V1.1.6p, Adobe Audition 1.5 
and GoldWavev5.19. The rating was on a scale of 1 
to 5 with 5 being the highest quality. The ratings 
were based on various criterion like effective noise 
suppression, any distortion introduced after 
processing, clarity/naturalness of the audio. The 
graph plotted shows the ratings of this experiment. 
Also, there were interesting feedbacks from the 
listener panel regarding these products which are 
being summarized here: GoldWave suppresses the 
noise completely but at the expense of distorting the 

main audio. Musical noise was noticed more in 

 
Figure 3 : Subjective results from different noise 
removal products 

GoldWave compared to the other products. Dart Xp 
Pro’s algorithm removes noise to a considerable 
extent but on the downside the algorithm seems to 
suppress the high frequency content of the signal or 
in other words the de-noised output has a low-pass 
filtered effect making it unfit for an audience 
expecting wideband audio. Adobe Audition 1.5’s 
noise removal tool cleans up the noise considerably, 
the de-noised audio was wideband unlike Dart Xp 
Pro but, there were clear traces of musical noise, 
lesser than GoldWave. Also interestingly, the 
wideband speech signals exhibited signatures of 
comb filtering type distortions. Lastly, our method 
was unanimously appreciated for de-noising without 
distorting the main signal components of the audio. 
Also, the algorithm was appreciated for its wideband 
output. As a downside, occasional traces of noise 
were found to fade in and fade out of the audio in 
some of the samples. The audio samples used in this 
evaluation are available at http://www.atc-
labs.com/anr. 
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